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ABSTRACT

We examine the problem of maximum likelihood covari-
ance estimation using a sensor array in which the relative
positions of individual sensors change over the observa-
tion interval. The problem is cast as one of estimating
a structured covariance matrix sequence. A vector space
structure is imposed on such sequences, and within that
vector space we define a constraint space given by the in-
tersection of a hyperplane W, and the space of sequences
of nonnegative definite matrices W,. Knowledge of the
changing array geometry is used to reduce the dimension
of the search space. An extension of the inverse iteration
algorithm of Burg et al. is proposed for finding the maxi-
mum likelihood solution.

1. INTRODUCTION

In many array signal processing applications knowledge of
the observation covariance matrix is essential. Examples of
such applications include MVDR beamforming and direc-
tion of arrival estimation using MUSIC. Many algorithms
for estimating the covariance matrix are available. Perhaps
the simplest and at the same time most common is given by

R
R= > xmxh 1
m=1

which is the maximum-likelihood estimate given identical,
independent, zero-mean random vectors X,, with covari-
ance R. Other estimators incorporate information about the
array geometry. These are commonly called structured co-
variance estimators and were introduced in [1].

When the array changes shape significantly over an ob-
servation interval the statistics of the data vectors change,
however. This invalidates the identical distribution assump-
tion used to obtain (1) and the assumptions of most struc-
tured covariance estimation algorithms. The phenomenon
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of time-varying arrays of sensors exists in nearly all array
applications. (No array is truly time-invariant, although they
may be close enough to achieve the desired performance.)
The effect is exaggerated, though, in towed sonar arrays
which are subject to underwater currents and the maneuver-
ing of their parent platform. An array of sensors in which
each sensor is mounted on a different platform with its own
propulsion also constitutes a time-varying array.

Direction-of-arrival and spectrum estimation for time-
varying arrays has been addressed by a number of authors.
Direction-of-arrival estimation was addressed in [2] and [3].
Fast algorithms for doing the same which are based on the
eigenstructure of the matrix are presented in [4]. In [5]
the EM algorithm is used to estimate the power of far-field
sources using a time-varying array.

In this paper we address the problem of maximimum
likelihood (ML) covariance estimation for time-varying ar-
rays. We proceed by defining a mathematical infrastructure
and applying commonly used linear algebra techniques. We
then propose several search algorithms to find the covari-
ance that maximizes the likelihood under several constraints
imposed by the array motion. What results may be consid-
ered a time-varying structured covariance estimation algo-
rithm.

2. DEFINITIONS

Let N be the number of elements in the array and p,(t) €
R?® be the position of the nth element at time ¢. Let M
denote the number of data vectors sampled by the array at
times {¢;,%2,--- ,tpr} with sampling frequency Fs. The
mth data vector we represent by x,, which is a normally
distributed complex random variable with mean 0 and co-
variance R(¢,,) = R,,. The time-varying nature of the
array implies that R, need not equal R,,,4,. The problem
is therefore to estimate R,,, form = 1,--- | M.

We make two assumptions regarding the available infor-

DESTTRE

43 Distribution Unlirnited



mation. First, the NV x 1 steering vector a(©, t) is known for
all ¢,, and for all © € S2. The nth element of the steering
vector is given by

[_kT(eipnm] .

where k(0) is the unit vector associated with the direction
©. Secondly, the signal originating at any direction is un-
correlated with signals originating at other directions. Also,
the sampling rate is such that the sampled signals are in-
dependent random variables. The time-varying covariance
matrix is then given by

an(0,t) = exp

R, = / 52(0)a(®, tn)af (0,4,)d0  (3)
52

where 2(©)d0 is the time-invariant power of the differen-
tial emitter at location ©.

Since we are interested in a sequence of Hermitian ma-
trices let us introduce the following notation:

Definition 1 For positive integers N and M, let Vi, u be a
space suchthat X € Vi, impliesthat X = [X,,--- , X y]
where X,, € CV*N and x,H,, =X

Observe that we denote elements of this space by capital,
bold-faced letters with an overbar and the mth element of
the sequence by the same letter with a subscript. For some
a€RandX € VN, m we define scalar multiplication as

aX = [aXy,--- ,0X ). 4)

Similarly, addition is defined element-wise,thatis for X, Y €
VN.M

X+YE[X1+Y1,'--,XM+YM]. 5)

It is easy to see that under these operations Vv, ar is a vector
space over R. For notational convenience we also define the
following operations on vectors:

XY X1Y1, -, X Yu) (6)
X [xfl’ T ’xl_vll] - M

Notice that under vector addition as defined in (5) and using
(6) as vector multiplication, V y, 3s forms a non-commutative
ring . The multiplicative identity is then the length-M se-
quence of N x NN identity matrices and (7) is the multiplica-
tive inverse of X. With this in mind, it would be appropriate
to refer to (6) and (7) as multiplication and inversion respec-
tively.

il

Definition 2 VX, Y € Vv s let
M

Y= Z tr (XﬁYm) .

m=1

Wi

X,

We claim that this is an inner product on Vi, r. This is a
result of the following facts which are easily proved for all
ae€ RandX,Y,Z € VN u:

X,Y)eR
(X+Y,2)=(X,Z)+(Y,Z)
(X, Y) = a(X,Y)
(X,Y) = (Y,X)
(X, X) > 0 with equality iff X = [0,--- , 0]

Therefore (Vn,u, {, -, }) is an inner product space.

The covariance matrix sequence is an element, R, of
Vi, ps. With this in mind we can rewrite (3) as

o [ e
R= /S #%(0)(©)do @®

where

‘II(O) = {a(@, tl)aH(es t1)7 M 73(97 tM)aH(e: tM)}‘

The span of ¥(O) over all © € S? is a vector subspace of
Vv, ar. We will call this subspace W;. It is clear from 8)
that R € W,. Being a vector space, W is convex and there-
fore path-connected. Furthermore, there exists an orthonor-
mal basis for W;. We will let Wo € Viv, s be the space of
all length-M sequences of non-negative definite Hermitian
matrices. Since any covariance matrix is non-negative def-
inite, R € Wa,. It can be shown that Wy is also convex.
Since the desired sequence lies within both subspaces the
constraint space is their intersection W = W; NWs. As the
intersection of two convex sets, W is also convex.

We remark that the set of matrix sequences W may not
coincide exactly with the space of matrix sequences given
by the model in (3), although as has been shown the latter
is a subset of W. Our constraint space may contain elements
outside of the cone described by (3). The discrepancy be-
tween the two spaces, and the consequences thereof, remain
open questions.

We will now derive the log-likelihood function of the
covariance matrix sequence for the given data set. The pdf
of the data vectors is defined only for the interior of Ws:

M
Fxu,eeeyxar) = a7 MM (H IRmrl)

m=1
M
X exp (— z xﬁR,‘nlxm) . )
m=1
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The log-likelihood is then

M M
IR) ==Y In[Rm| = Y tr (xR xm)
m=1 m=1

M M
=— > In[Rn|— > (RS,  (10)
m=1 m=1

where we shall call
S = Xmx2 (11)

the sample covariance matrix at time ¢,,. Observethat S,,, =
SH and therefore the length-M sequence of all such matri-
ces, S, is an element of Vv, m. We can use the notation of
definition 2 to simplify (10):

M
IR;8)=—) WmRn[—(RLS). @12

m=1
To find the gradient of the log-likelihood function we
will make use of several differentiation theorems found in
[1].
Theorem 1 For R, ® € CN*V,
% In|R + :cd?[ =tr(R™'®).

Theorem 2 ForR,S,® € CNXN,

d

T tr((R + z®)'8) = - tr(R™I1®RLS).

The directional derivative of the log-likelihood along the
vector @ is

d o o dE
TR +28:8) = —— mZ::ImIRm + 38,
+tr((Rn + 2%1) "'Spm)
M
== tr(R;'®n) — tr(R;' xR, Sm)

m=1

M
=- tr(R;'®, - R;!SmR;1®m)

m=1
M
o $ (@ RS
m=1
— ®RIBR--R.3). (13)

Therefore the gradient of the log-likelihood function is given
by

VI(R,8)=R7'SR'-R. (14
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Note the similarity of this expression to the analogous ex-
pression for the gradient of the log-likelihood in Burg ez al.
[1]. Here the matrices have been replaced with matrix se-
quences.

3. ESTIMATION ALGORITHMS

One possible estimator is the projection of the sample co-
variance matrix sequence, S, onto the constraint space W.
This is equivalent to selecting the point in W that is the
closest to S by the standard distance metric for inner prod-
uct spaces:

dX,¥)=(X-Y,X-Y)2. (15)

Because of the similarity between this estimator and clas-
sic filtering where a signal is projected onto the subspace
of all signals which satisfy a certain constraint, we will re-
fer to this estimator as the sample sequence filter. Since
W is the intersection of two convex spaces we employ the
method of projection onto convex sets (POCS) in which the
estimate is first projected onto W and then onto W5. This
iterative procedure continues until the improvement in like-
lihood gained with each iteration is negligible. Since W is
a vector subspace the projection of a vector X onto W; is
given by

L
X'=Y (X, 8)% (16)

=1

where &, are the members of an orthonormal basis of W
and L is the dimension.

Projection onto W, for the given inner product is found
in [6]. First, the eigendecomposition is determined:

X = CmAm I3} (17

Then the projection onto the set of non-negative definite ma-
trices is given by setting the negative eigenvalues to 0:

X! = T'pmmax(Anm,0)T;}. (18)

The projection of the sequence X onto W- is the element-
wise projection of each X, as described by this equation.

The sample sequence filter, by its definition, finds the
sequence which is in the constraint space and the closest to
the sample sequence by the distance metric given in (15).
Experience has shown, however, that the best estimate is
rarely the closest to the sample sequence. We therefore pro-
pose searching the constraint space for the maximum likeli-
hood estimate using the filtered sample sequence as a start-
ing point.

Each of the search algorithms which we will consider
proceed by calculating a search direction, D € Wy, along



which the likelihood function must be maximized. That is,
in each iteration we determine a D and then find Ag such
that

Xo = argmaxI(R" + D).

The updated estimate is

2 (41 2
R(l ) - R(l) +2oD.

This iterative process should be allowed to continue until
the gradient is sufficiently close to being orthogonal to W),
that is until
Z,—l(Vl(R S), & i
(Vl(R S), Vl(R S))

19

Observe that since [ is defined only on the interior of W and
D € W, the estimate will be within the constraint space at
each iteration.

Perhaps the most obvious approach to calculating Dis
to use the gradient in (14). D can be the projection of the
gradient onto W7 . Alternatively, a conjugate gradient direc-
tion can be calculated by incorporating memory of previous
search directions. We suggest, however, a modification of
the inverse iteration algorithm proposed by Burg, et al. in
[1]. Burg’s algorithm was designed for estimation of a sin-
gle matrix rather than a sequence of matrices but is easily

. . 2 (2)
generalized for sequences. For some estimate R~ select a

search direction, D, such that VI (f{(l); S—D) is orthogonal

to W,. Clearly, if D = 0 then R is the maximum likeli-
hood estimate since the likelihood gradient is orthogonal to
the constraint space at that point.

Before the modified inverse iteration algorithm may be
seriously considered, though, one must ask whether a sta-
bie point of the algorithm maximizes the likelihood func-
tion within the constraint space. That is, does each iteration
of the algorithm lead to an improvement in likelihood for a
nonzero search direction? The answer is yes, as shown by
the following theorem:

Theorem 3 Suppose there exists D # 0 € Wy such that

VI(R;S—D) is orthogonal to W . Then there exists A € R,

X # 0, such that l(R + AD; S) > [(R; S).

Proof: By way of contradiction, suppose that
argmax!(R + AD;S) =0

This implies that VI(R; S) is orthogonal to D. That is,

(VI(R;S),D) =

Therefore,

(VI(R;S-D),D)=R}(S-D)R'-R,D)
= (VI(R,5) - R-'DR"!, D)
- —(R™'DR"',D)
Since D € W; we know that (VI(R;S — D),D) =
Therefore
(R™'DR,D) =0.

It can be shown that this implies that R_;'D,,, = 0 for all
m. Therefore D,,, = 0 for all m which is a contradiction.
[ ]

We now concentrate on finding the direction which sat-
isfies the necessary condition on the gradient. This is equiv-
alent to finding D which satisfies

RIS-DRIT-RL,3)=0 20

for all i. We note that this is a system of equations which are
linear in D and that therefore a closed-form solution exists.
Since D € W, there exist real a; such that

D=3 o;%; @21)
j
Substituting (21) into (20) and rearranging we get
RYS-DR!-R™ <I>-)
=@RS- Z o;®) R —R™%, &)

= (VI(R; )= o (RT'ER, &) (22)

J

Therefore we need only find @ € R such that

Ao=B 23)

where
7 =(R&R, ;) (24)
B; = (VI(R;S), <i>) (25)

4. COMPUTER SIMULATION

We have simulated a uniform linear array (ULA) consist-
ing of N = 5 isotropic sensors which is rotating with ro-
tational velocity w about the center element. The axis of
rotation is orthogonal to the axis of the ULA. There are 3
source fields impinging upon the array which originate at
(azimuth, elevation) = (45°,0°), (85°, 20°), and (110°,0°).
Here azimuth is the the angle made with the axis of the ar-
ray at t = 0 and within the plane of rotation. Elevation
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Figure 1: Algorithm convergence rate comparison.

is the angle made with the plane of rotation. For example,
(90°,10°) would describe a direction orthogonal to the ini-
tial array axis and 10° above the plane of rotation. Each
of the sources are assumed to be narrowband with wave-
length A and the separation between elements in the ULA
is % The power of each source at the array is 30dB, 15dB,
and 20dB respectively. Receiver noise is 0dB. The rota-
tional velocity of the array is w = 27 rad/sec, the sampling
rate is F; = 32s™'. and the number of samples collected
is M = 16. Therefore. the array gathers 16 data vectors
while completing a half rotation. Since the statistics of the
data vector change dramatically over this observation inter-
val one expects the covanance estimator in (1) to perform
badly. It is unclear even what steering vector to use with
this covariance esumate 1n. for example, an MVDR or MU-
SIC estimator. That makes this scenario a good candidate
for covariance matnx sequence estimation.

Each of the algonthms considered begins by calculating
the sample covanance matrix sequence and filtering it by
the method of POCS using the projections in (16) and (18).
The &, are obtained by Gram-Schmidt orthonormalization
of the set of vectors ¥(6) where © is a discretization of the
2-sphere. For this example. the dimension of W is L =
76. Note that the dimension of Vi »r is N2M = 400 and
we have managed to ehminate 324 parameters of the matrix
sequence by applying information about the motion of the
array.

The ML search routine follows the filtering. We applied
a gradient and conjugate gradient search algorithm in addi-
tion to the modified inverse iteration algorithm. The likeli-
hood of the estimate at each iteration is plotted in Figure 1
for each of the algorithms.

Observe that the gradient and conjugate gradient algo-
rithms converge to points with the same likelihood. The
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Figure 2: MVDR spectrum estimated from the first matrix
in the sequence. The dashed line is that obtained from the
sample sequence filtering procedure. The solid line was cal-
culated from the ML sequence.

conjugate gradient reaches this point in fewer iterations, which
is to be expected. However, the convergence point of the in-
verse iteration algorithms exceeds the likelihood of the es-
timate obtained from either gradient algorithm after only a
few iterations. Inspection of the likelihood gradient at what
appears to be the convergence point of the gradient algo-
rithms reveals that it is not orthogonal to W; and that while
successive iterations yield only slight improvement in like-
lihood, they have failed to reach a local maxima. One possi-
bility is that they have stumbled upon a “’ridge” in the like-
lihood function. It is clear that, in this example at least, the
inverse iteration algorithm reaches a solution in fewer itera-
tions than even the conjugate gradient algorithm. It should
be noted, however, that finding the solution to (23) requires
more compuation than calculating the likelihood gradient
and projecting it onto W.

To demonstrate the validity of the ML estimate, the MVDR
spectrum corresponding to the first matrix in the sequence
has been calculated and plotted in Figure 2. The spectrum
is calculated using

1

52(8) = _ .
Y af (6,4 R a0, 1)

(26)

R, is the first matrix in the sequence obtained by the in-
verse iteration algorithm since the other two algorithms failed
to produce a maximum likelihood estimate. The position of
each of the sources is easily ascertained from the plot as is
a feeling for their intensities. Also plotted is the spectrum
obtained from just the sample sequence filter. While peaks
which correspond to two of the sources can be seen, the
third is lost and the background noise is quite high. This



demonstrates the necessity of the ML search algorithms.

5. CONCLUSIONS

We have developed an algorithm for estimating the sequence
of matrices which are the covariances of the data vectors of
a time-varying sensor array. Since each matrix in the se-
quence is structured to satisfy (3) this may be classified as
a structured covariance estimation algorithm in which the
sequence of matrices itself is structured. This method will
have good performance for time-varying arrays in which the
array motion is periodic, as with the rotating ULA, since
the constraint space basis need not be continuously recalcu-
lated, which relieves the processor of some of the compu-
tational burden. It has been demonstrated that the modified
inverse iterations algorithm can converge faster and more
reliably than a simple gradient search algorithm, although
with increased computational complexity per iteration.
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